A Random Effect Block Bootstrap for Clustered Data
نویسندگان
چکیده
منابع مشابه
Optimum Block Size in Separate Block Bootstrap to Estimate the Variance of Sample Mean for Lattice Data
The statistical analysis of spatial data is usually done under Gaussian assumption for the underlying random field model. When this assumption is not satisfied, block bootstrap methods can be used to analyze spatial data. One of the crucial problems in this setting is specifying the block sizes. In this paper, we present asymptotic optimal block size for separate block bootstrap to estimate the...
متن کاملoptimum block size in separate block bootstrap to estimate the variance of sample mean for lattice data
the statistical analysis of spatial data is usually done under gaussian assumption for the underlying random field model. when this assumption is not satisfied, block bootstrap methods can be used to analyze spatial data. one of the crucial problems in this setting is specifying the block sizes. in this paper, we present asymptotic optimal block size for separate block bootstrap to estimate the...
متن کاملMatched { Block Bootstrap for Dependent
SUMMARY. The block bootstrap for time series consists in randomly resampling blocks of consecutive values of the given data and aligning these blocks into a bootstrap sample. Here we suggest improving the performance of this method by aligning with higher likelihood those blocks which match at their ends. This is achieved by resampling the blocks according to a Markov chain whose transitions de...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولAsymptotics and Bootstrap for Random-Effects Panel Data Transformation Models∗
This paper investigates the asymptotic properties of quasi-maximum likelihood (QML) estimators for random-effects panel data transformation models where both the response and (some of) the covariates are subject to transformations for inducing normality, flexible functional form, homoskedasticity, and simple model structure. We develop a QML-type procedure for model estimation and inference. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2013
ISSN: 1061-8600,1537-2715
DOI: 10.1080/10618600.2012.681216